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The p-partit ioning and p-coloring problems on a Bethe lattice of coordination 
number  z are analyzed. It is shown that these two NP-complete optimization 
problems turn out  to be equivalent to finding the ground-state energy of p-state 
Potts models with frustration. Numerical calculation of the cost function of both 
problems are carried out  for several values of z and p. In the case of p = 2 the 
results are identical to those obtained by M+zard and Parisi for the case of the 
bipartitioning problem. A numerical upper bound to the chromatic number  is 
found for several values of z. 
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1. I N T R O D U C T I O N  

The equivalence of combinatorial optimization problems and spin-glass 
models allows us to apply the methods of statistical mechanics to these and 
possibly to other NP-complete problems. (~) Fu and Anderson (z) have 
shown that the bipartitioning of a random graph, in the case of extensive 
connectivity, is equivalent to finding the ground-state energy of the 
Sherrington and Kirkpatrick spin-glass model. (3) This result has been 
extended to the case of the partition of a graph in p subsets by Kanter and 
Sompolinsky. (4) They have shown that the partitioning and coloring of a 
random graph, in the case of extensive connectivity, are mapped onto the 
infinite-range p-state Potts glass. (5'6) 

The bipartitioning of a random graph, in the case of intensive connec- 
tivity, has been considered by Banavar e t  aI., (7) who have shown that the 
problem is related to the Ising spin glass on a Bethe lattice of coordination 
number equal to the connectivity. The bipartitioning problem on a Bethe 
lattice was studied further by Sherrington and Wong (s) and M6zard and 
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Parisi. (9) They estimated the cost function, which is related to the ground- 
state energy of the corresponding spin-glass model, and found results close 
to the numerical values obtained by Banavar etal. (7) The bipartitioning 
problem with finite connectivity was also studied by Liao, (12) who used the 
replica method to obtain solutions with cost functions lower than that 
given by the spin-glass solution. 

In this paper I analyze the p-partitioning and p-coloring problems on 
a Bethe lattice of coordination number z. The study of these problems on 
such a lattice is motivated by the relationship between an infinite Bethe lat- 
tice and an infinite random graph of intensive connectivity. If one considers 
a random graph with N vertices such each vertex is connected to exactly z 
other vertices, then, in the N ~ oe limit, the random graph is expected to 
behave like a Bethe lattice of coordination number z. (7) In this case, the 
results obtained here would be also appropriate for infinite random graphs 
of intensive connectivity z. 

The graph partitioning (coloring) problem consists in the partition of 
a set of vertices into p subsets of equal size in such a way that the number 
of edges connecting vertices of different subsets (the same subset) is 
minimized. By associating to each vertex a p-state Ports spin variable, these 
two NP-complete optimization problems turn out to be equivalent to 
finding the ground-state energy of p-state Ports model with frustration. In 
the next section I show how this equivalence is obtained by following a 
derivation presented by Kanter and Sompolinsky. (4) 

2. THE PROBLEM 

Consider a lattice of N sites each with coordination number z and let 
us associate to each site i a p-state Potts spin variable ni = 1, 2 ..... p. Given 
a spin configuration {ne}, the number of bonds connecting spins in 
different states (the cost function of the p-partitioning problem) Fpp is given 
by 

Fpp=~ (1-6.i~) (1) 
(6) 

where the summation runs over all bonds of the lattice. Similarly, the 
number of bonds connecting spins in the same state (the cost function of 
the p-coloring problem) Fcp is given by 

Fcp= 2 (~nin) 
(ij) 

For each problem the cost function has to be mimmized 

(2) 

over the spin 
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configurations {ni} that have the same number of spins in each state. That 
is, the minimization is subject to the global constraint 

~ 6n,n=N/p (3) 
i 

for n = 1, 2 ..... p. This constraint introduces frustration into the problem. 
If we let the spins interact according to the Potts prescription, (1~ the 

energy g of the spin configuration {hi} is given by 

e = - e  ~, ,5,,,,,j + go (4) 
(0) 

where go is an arbitrary constant. Choose it in such a way that g is written 
in the form 

e =  -Jo (5) 
(0) 

where the coupling Jo is related to e by J0 = e/p. The energy g is related to 
the cost functions Fpp and Fop by 

g = Jo[pFpp - - ( p  - 1 ) Nb]  (6) 

and 

o ~ = - J o ( p F ~ p  - No)  (7) 

where Nb is the total number of bonds. The partitioning and coloring 
problems are therefore equivalent to minimizing the energy of the Potts 
model with ferromagnetic (Jo > 0) and antiferromagnetic (Jo < 0) 
couplings, respectively, both subject to the constraint (3). 

In the case of a Bethe lattice the partition constraint (3) is simulated 
by quenched random fields on the boundary spins. The probability 
distribution of the field at a boundary spin is chosen to be a symmetric 
distribution. This means that the distribution is invariant under the 
permutation of any two pairs of the Potts field components. Due to the 
recursive relation between the effective fields acting on sites belonging 
to successive generations of the Bethe lattice, the symmetry property 
propagates to all sites, which ensures the partition constraint (3) to hold 
among all spins of the lattice. 

By writing the Hamiltonian ~r of the system as 

= 1) (8) 
(0) 

822/54/i -2-31 
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one can state the partitioning, the coloring, and the Potts spin glass as 
follows. Let P(J~)) be the probability distribution of the coupling Ja, given 
by 

P ( J i j )  = ctS(Jo. - J )  + (1 -- c) 6(J a + J) (9) 

with J > 0 .  One has then (a) for c =  1, the partitioning problem; (b) for 
c = 0, the coloring problem; and (c) for c = 1/2, the symmetric Potts glass. 
All three cases should have random and symmetric boundary conditions. 

It is worth noting that the Potts spin glass with a -t-J distribution of 
bonds, defined above, cannot be mapped by a gauge transformation into 
either the ferromagnetic or the antiferromagnetic Potts model with random 
boundary condition, except the case p = 2, which corresponds to the 
Ising spin glass. In other words, the three models defined in (a), (b), and 
(c) cannot be mapped into one another when p > 2. 

3. T H E  I N T E G R A L  E Q U A T I O N  

Consider a Cayley tree of coordination number z and let po = (6 ,0 , )  ' 
n = 1, 2 ..... p, be the thermal average of 6n0 n corresponding to the central 
spin of the tree. It is given by 

with 

p ~  z ~ (lO) 
1 1 

! 
O w  ] ]  ~oi (11) Z n - -  

i = l  

where ~o~ is obtained recursively by the following hierarchic equation: 

p K 

/ = I  k = l  

The product in k extends over the K =  z - 1  spins connected to the site i 
which belong to the same generation. 

From Eqs.(10) and (11) we see that only the ratios, say 
~Oi#'Oi yOi/yOi ~'Oi /~'Oi l ~ p ,  ~ 2 ~ p  ..... ~ p _ i / ~ p ,  are relevant to the calculation of pO. It is thus 
more convenient to introduce the p - 1 effective field components h~ related 
to these ratios by 

exp(pflh~) = L'u/(0 (13) ~ n t ~ p  
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for n = 1, 2 ..... p - 1. If we define the function f (~ l ,  ~2,'", ~p- 1, ~p) by 

p_~ P 

l = 1  

then the hierarchic equation can be written as 

/ J - -  j " h n - f ( H p  H~ ..... Ji/+ H~ ..... H/p_l, O) 

- f ( H ~ ,  H~ ..... H~,..., Hip t, Sej) 

for n = 1, 2 ..... p -  1, where 

(14) 

(15) 

K 

H~= ~ hff (16) 
k = l  

f o r / =  1, 2,..., p -  1. 
The vectoreffectivefields(hf, h~,...,h~ 1) - h~ tt'jk~,,,1 ' " 2  l~jk'' ' ' ' ' 'p-l) ~ 

k =  1, 2,..., K, are interpreted as random vector variables. The random 
vector variables h/k, k = 1, 2 ..... K, are supposed to be independent random 
vector variables with the same probability distribution. In the limit of 
an infinite Cayley tree this probability distribution will be identical to 
the probability distribution of the variable h ~. Denoting this limiting 
distribution by g(hl, h= ..... h p _ l ) ~  g(h), we have the following integral 
equation: 

p - - 1  

g(h )=f  dJ' P(J') 1-[ 6(h+-f++ fp) 
l = 1  

K 

• I-1 g (hk )dh~dh~ah~  - ,  (17) 
k = l  

where f t  and fp are defined by 

f+ =f(H1, H=,..., J ' +  H+ ..... He_ 1, 0) 

fp = f ( H , ,  H2,..., Hp 1, J ' )  

(18) 

(19) 

K 

n,= E hf (20) 
k = l  

for l = 1, 2 ..... p -  1, and 

with 

for l =  1, 2,..., p -  1. 
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introduce the characteristic function ~b(Xl, x2,..., xp_l)-c~(x) 

(21) 

~(x ,= f dJ' P(J')exp ( i  ~ xtj~/)G(~, d~, d~2"" "dip 
l=1 

?t = f ( ~ l ,  ~2,.--, J 'q-~,, . . . ,  ~p-1,  ~p) (28) 

for l=  1,2 ..... p, and on the rhs of Eq. (27) Xp= - x l - x 2  . . . .  Xp ~, so 
that ~(x) is of the form of the rhs of Eq. (25). 

(27) 

where 

we have 

so that 

From Eq. (17) we obtain the following integral equation for ~(x): 

~(x )=fdJ 'P (J ' ) exp  i ~ x , ( f t - fp )  a(H)dHxdH2. . .dHp_l  (23) 
/=1 

where G(H)-  G(HI, H2 ..... Hp_ 1) is given by 

fexp y,Ht [~(y)]K dy~ dy2...dyp_~ (24) G(H)=(2g) -p+1 

andft  andfp by expressions (18) and (19). 
In order to exploit the full symmetry of the model, it is convenient to 

introduce a function ~(xl, x2 ..... Xp_l, Xp)=-~(x) of p variables. Then the 
solution 0~(x) of the integral equation (23) is of the form of the rhs of the 
equation 

@ ( X l , X 2 , . . . , X p _ _ I ) = ~ ( X l , X 2  ..... X p _ _ I , - - X l - - X  2 . . . .  Xp 1) (25) 

Indeed, if we define G(r ~2,..., Cp-1, ~p)=-G(~) by 

/=1 
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At the boundary, the probability distribution has to be symmetric in 
order to ensure that the constraint (3) is satisfied on the average. This 
implies that we should look for symmetric solutions for ~(x), that is, such 
that 

~ ( X  m ,..., X ,  ..... X . . . . . .  X p )  ~-- ~ ( X  1 ,..., X . . . . . .  X ,  ..... X p )  

for any permutation. 

4. T H E  Z E R O - T E M P E R A T U R E  L I M I T  

In the limit of zero temperature, fl -~ oe, the function f(~)  reduces to 

f ( ~ ) = m a x ( ~ l ,  ~2,.--, ~p) (29) 

In this limit I show that the solution of the integral equation (23) is of the 
form 

{~j} i=1 

where (rj=0, 1, and A(ff)=--A(crm,az,...,ffp) a r e  coefficients to be deter- 
mined. The term corresponding to cr = 0 is excluded from the summation. 

First, we have 

[~(x)] K= ~ B(z)exp(iJ ~ r,x,) (31) 
{~A z = t  

where vj = 0, 1, 2 ..... K, and B(r) = B(r~, z2 ..... rp) are related to A(~r) by 

= 

where the summation 

~. ~ ... ~' A((rm)A((r2)...A((rx) (32) 

has the restriction ~ = a m + (r z + ... + (r x. Therefore 

After substituting this 

P 
G(~)= ~ B(~) ~ 8(~,-J~,) (33) 

in Eq. (27) and taking into account Eq. (29) we get 

~b(x)=c ~ B(r)exp IiJ ~ xzmax(~m,..., r , + l  ..... rp)] 
{zj} / = 1  

+ ( l - c )  ~ B(r)exp iJ ~ xtmax(r l , . . . , r l -1 , , . . ,~p)  
{L'} l = 1  

where, of course, xp-- --x 1 - -x  2 . . . .  Xp 1. 

(34) 
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Let us define ct[(~) and a)-(T) by 

at + = max(z1 ..... rt + 1,..., r p ) -  max(ca ,..., %.. ,  rp) (35) 

and 

~-  = max(z1,..., z t -  1 ..... %) - max(~1 ..... ~t ..... rp) + 1 (36) 

It is easy to check that if zt/> %, then ~+ = 1, otherwise a [  = 0; and that if 
~ > % ,  then a~- =0,  otherwise a t  = 1. By using the property 
Xl + x 2 +  ... + X p = 0  we get 

C" ) ~b(x)=c ~ B(r) exp iJ ~ c~i~x~ 
{~j} \ l=t 

+ ( l - - c )  ~ B(~)exp( i J  ~ aFx,) (37) 
{~j} l=a 

which is of the form of the rhs of Eq. (30), since , ~  takes only the values 0 
and 1. By comparing the rhs of Eq. (30) with Eq. (37), we obtain 

A(0.) = cA + (0.) + (1 - c) A-(0.) (38) 

where 

A+-(a) = ~ B(z) (39) 

with a+ = ( ~ , a f , . . . , a + ) .  Equations (38) and (32) constitute a set of 
equations for the coefficients A(o). Since we are looking for symmetric 
solutions, A(o) and B(z) are chosen to be symmetric. In this case the 
number of independent A coefficients is p, but if we take into account the 
normalization condition, this number is reduced to p -  1. 

In order to write explicit expressions for A(a) and A-+(o), we 
introduce the notation At and At-+ defined by At=A(0.1, 0.2 ..... 0.p) and 
A/~ = A -+(O'1, 0" 2 ..... O'p) with l =  0., + 0.2 + "'" + 0.p. We have then 

A,  = c A ?  + (1 - c) A ;  (40) 

and 

A~ = 0  

K ~1 l xl 1 

A t : Z  2 -..L 
"ril l  "rt+l =0 Zp=0 

B(vI, TI.", "~l, "(l+ 1,'"~ Tp) 

(41a) 

(41b) 
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for l = 1 , 2  ..... p - l ,  

and 

for l = 0, 1, 2,..., p -  2, and 

K 

A ;  = 
"Cp~O 

A 7 = 0  

Ap_ 1 =A~- 
Ap = 1 -pA~ 

(41c) 

(42a) 

(42b) 

(42e) 

5. FREE ENERGY 

The free energy per site F can be calculated from 

Z 
F = ~  

- ( z -  1) f F,(~) GI(~) d~, ...dip (43) 

where G(~) is given by Eq. (26) and GI(~) by 

~ ( ~ ) = ( 2 n )  P f e x p ( - i ~  yt~t)[~(y)]zdyl...dyp (44) 
l = i  

The functions Fl(~) and F2(~, ~') are given by 

P 

r~(~)= _fl-11n ~ exp(pflCt) (45) 
/ = 1  

f F2(~,~')=-fi ~ dJ'P(J')ln ~ exp[flJ'(pSm-1)+pfl(~+~'r) ] 
l,l'= I 

(46) 

If the rhs of Eq. (43) is thought of as a function of g(h) through Eqs. (44), 
(26), and (22), then one can prove that g(h) satisfying Eq. (17) makes this 
functional stationary under the restriction 

f g(h) dhl dh2.., dhp_~ = 1 (47) 
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In the limit of zero temperature, the energy per site E is obtained from 
E = lim F when fl ~ ~ .  By using the solution of the integral equation given 
by Eq. (30), we get 

Z 
E = ~[cE~ + (1 - c) E y  ] - (z - 1 ) E~ (48) 

where 

E 1 = - p J  ~ ~ A(a)B(z)max(zl+al, r z + a 2 , . . . ,  zp+ap) 
{~j} {~j} 

(49) 

and 

with 

E f = - J  ~ ~ B(~) B(~') max(o~ ,  ~0~ ..... o~ +)  (50) 

e)t~, = + ( p f l t , -  1 ) + P(~t + "c'u) (51) 

From the energy per site E we can get the cost function per site 7pp for 
the partitioning problem by using Eq. (6) with Jo = 9". We have 

1 z 

Analogously, we get the cost function per site 7cp for the coloring problem 
by using Eq. (7) with Jo = - J .  It is given by 

1 E z 

The equations for the coefficients A always admit the trivial solution 
(the paramagnetic solution) given by A ( a ) = I  if a = ( 1 ,  1, 1 ..... 1) and 
A(a)  = 0, otherwise, from which we get B(r) = 1 if ~ = (K, K, K,..., K) and 
B(z) = 0, otherwise. This solution gives E =  - J z [ c ( p -  1) + 1 - c]/2, so 
that ])pp = 0 and 7c, = 0, that is, the trivial solution corresponds to zero cost 
function for both problems. For further use, let us define the quantity y by 

x{ z } 
7 = p  7 + ~ [ c ( p - 1 ) + ( 1 - c ) ]  (54) 

which gives the cost function per site for the p-partitioning problem when 
c = 1, and for the p-coloring problem when c = 0, and is essentially the dif- 
ference in energy between a certain solution and the paramagnetic solution. 



Graph Opt imizat ion  Problems on a Bethe Lattice 487 

6. THE CASE p = 2  

When p = 2 ,  Eqs. (42) give A [  = A ~ ,  l = 0 ,  1, 2, so that the rhs of 
Eq. (40) is independent of c. We have also E ]  = E~,  so that E and ~ are 
also independent of c. These results merely reflect the fact that the three 
problems, the bipartitioning, the bicoloring, and the Ising spin glass, are 
equivalent; one can transform one onto another by a gauge transformation. 
The three coefficients Ao, A1, and A2 to be found are not independent since 
A o = 0  and 2 A a + A 2 = I ,  due to the normalization condition. Since 
A 2 - A  + - 2 , we obtain from expressions (41c) and (32) the following equation 
for A2: 

2, 2, ,55, 
A 2 =  Z 2l l ~12 ~11 

l = 0  

where Ix ]  is the integer part of x and A1 = ( 1 -  A2)/2. This equation was 
obtained by Sherrington and Wong (s) and M6zard and Parisi. (9) According 
to M6zard and Parisi, (9) the coefficient A 2 should be interpreted as the 
number of idle spins. 

From the solutions of Eq. (55) we calculate the energy per site E and 
the cost function per site 7. Table I shows the numerical results for several 
values of the coordination number z. All results, including the energy, are 
identical to those obtained by M6z~rd and Parisi (9) for the bipartitioning 
problem. 

Table I. The Coeff ic ients A 1 and A 2, for  the Energy per Site E and the Cost 
Function per Site y, for Several Values of z, for  the Case p=2 

z A 1 A 2 - - E  7 

3 0.333333 0.333333 1.277778 0.111111 
4 0.400000 0.200000 1.488000 0.256000 
5 0.385603 0.228793 1.691329 0.404335 
6 0.416453 0.167093 1.855251 0.572374 
7 0.408726 0.182547 2.021556 0.739222 
8 0.426902 0.146196 2.162203 0.918899 
9 0.422281 0.155438 2.305790 1.097105 

10 0.434291 0.131418 2.431401 1.284299 
11 0.431363 0.137274 2.559379 1.470311 
12 0.439868 0.120263 2.674115 1.662942 
15 0.442998 0.114003 3.004463 2.247768 
20 0.453387 0.093225 3.482165 3.258918 

822/54/1-2-32 
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7. THE C A S E p = 3  

In the case p = 3 we have to find the coefficients Ao, A~, A2, A 3. Since 
A o = 0 and 3A1 + 3A2 + A  3 --1, due to the normalization condition, there 
are only, two independent coefficients to be found. I have solved 
numerically the equations that determine the coefficients A for several 
values of the coordinatiofi number z. From these coefficients ! have 
obtained the coefficients B, and from both of them I have calculated the 
energy per site E and the cost function per site V. Besides the paramagnetic 
solution which is always present and is given by A1 = A2 = 0 and A 3 = 1, I 
found a spin-glass solution. When both solution were present, I chose the 
one with higher energy, as is usual in spin-glass problems. Since V = 0 for 
the paramagnetic solution, the spin-glass solution is chosen whenever it 
gives ? > 0. 

Figure 1 shows ? as a function of c for the case z = 3. At c = c* = 0.431 
a first-order transition takes place and the system passes from a 
paramagnetic phase, O<~c<~c*, to a spin-glass phase, c*<~c<~ 1. This 
behavior is also observed for z = 4, as shown in Fig. 2, and for z = 5 and 
z = 6. For z/> 7, there is no transition and the system remains, for any 
value of c, in the spin-glass phase. Notice that 7 is a convex function of c. 

L / l l  / 
0.15 ] 

0.0006 

o ooo  / 

010 -o. 
�9 0.42 0.43 0.44 

0.05 - 

0.00 , , q / l  , , i 

0.0 0.5 1.0 
C 

Fig. 1. Cos t  funct ion V versus c for p = 3 and  z = 3. A first-order phase  t rans i t ion  occurs  
at  c = c * = 0 . 4 3 1 .  The pa ramagne t i c  phase  cor responds  to y = 0 .  The  inset  shows an 

en la rgement  a r o u n d  the t rans i t ion  point.  
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0 . 4  1 t b , [ , , , L 

~' / / I / -o .oo i  

0 . 2 -  

0 . 1 -  

0.0 E ] / / ~  F I , ~ , , 

).0 0.5 1.0 
C 

Fig. 2. Cost function y versus c for p = 3 and z = 4. A first-order phase transition occurs at 
c = c* = 0.224. The paramagnetic phase corresponds to 7 = 0. The inset shows an enlargement 
around the transition point. 

Tables II, III, and IV display the values of the coefficients A1, Az, and 
A3, as well as the cost function per site 7 for several values of z, for the par- 
titioning problem, the coloring problem, and the symmetric Potts glass, 
respectively. I show only the spin-glass solution, except for the case c - - 0  
and z = 3, 4, and 5, where only the paramagnetic solution exists. 

Table  II. The C o e f f i c i e n t s  A 1 , A 2, and A 3, and the  Cost  Funct ion  per  S i te  y, 
fo r  Severa l  Va lues  o f  z, f o r  the  Par t i t i on ing  P r o b l e m  (c=1) in p = 3  Parts 

z A l A 2 A[ 3 )~ 

3 0 .182277 0 .106296 0 .134283 0 .157800 

4 0 .122169 0 .077529 0 .100905 0 .354392 

5 0 .225838 0 .089222 0 .054819 0 .567785 

6 0.237821 0 .076535 0.056931 0 .792304 

7 0 .247720 0 .070614 0 .044999 1.028172 

8 0 .250774 0 .070854 0 .035114 1.269960 

9 0 .256474 0 .065007 0 .035557 1.517360 

10 0 .260994 0 .062592 0 .029243 1.770467 

11 0 .263274 0 .061327 0 .026197 2 .026939 
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Table II1. The Coeff ic ients A1, A 2, and A 3, and the Cost Function per Site y, 
for  Several Values of z, for  the Coloring Problem ( c = 0 )  in p = 3  Colors 

z A 1 A 2 A 3 y 

3 0 0 1 0 
4 0 0 1 0 
5 0 0 1 0 
6 0 0.185080 0.444759 -0.003770 
7 0 0.205538 0.383386 0.057602 
8 0 0.220417 0.338749 0.128909 
9 0 0.230219 0.309342 0.207621 

10 0 0.237275 0.288176 0.291550 
11 0 0.243800 0.268601 0.380201 
12 0 0.248792 0.253625 0.472723 

8. THE COLORING PROBLEM 

For the case of the coloring problem, c =  0, there is a drastic sim- 
plification of the equations that give the A coefficients. From Eqs. (40) and 
(42) we see that At = 0 for l = 0, 1, 2 ..... p -  2, so that the only surviving 
coefficients are Ap and Ap_ 1 .  However, they are not independent, due to 
the normalization condition pAp_ 1 + Ap = 1. After some algebra, we obtain 
the following equation for Ap: 

Ap ~ ~ A K - - N A N  (56) 
,ONp~X p ,,Xp_ 1 

N ~ O  

Table IV. The Coeff ic ients A 1 , A 2, and A 3, and the Cost Function per Site y, 
for  Several Values of z, for  the Symmetr ic  p = 3  State  Potts Glass ( c = 1 / 2 )  

z A 1 A 2 A3 7 

3 0.058409 0.126064 0.446581 0.010235 
4 0.093696 0.147672 0.275897 0.111218 
5 0.104786 0.153150 0.226192 0.238320 
6 0.111742 0.156083 0.196523 0.379357 
7 0.116702 0.157982 0.175948 0.530179 
8 0.120493 0.159295 0.160635 0.688457 
9 0.123521 0.160267 0.148636 0.852689 

10 0.126014 0.161013 0.138920 1.021827 
11 0.128048 0.161543 0.131226 1.195104 
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where Ap_ 1 = ( 1 - A p ) / p  and C~Np is given by 

N! 
C~NP=pN--P ~ 2 "'"  2 Y11 Y2 ~ (57) 

Vl~>0 v2~>v[+l Vp>~Vl+l �9 . , . ' ' ~ p !  

when N/> p -  1, where the summations are performed with the restriction 
vl + vz + .. .  + vp= N. When O<~ N < p - 1 ,  (gup= P u. 

Table V. Values of Ap for Several Values of z for the Coloring 
Problem in p Colors, for 2~<p~<8 

z A 2 A 3 A 4 A 5 A6 A7 A 8 

3 0.3333 1. 1. 1. l. 1. 1. 
4 0.2000 1. 1. 1. 1. 1. 1. 
5 0.2288 1. 1. 1. 1. 1. 1. 
6 0.1671 0.4448 1. 1. 1. 1. 1. 
7 0.1825 0.3834 1. 1. 1. 1. 1. 
8 0.1462 0.3387 1. 1. I. 1. 1. 
9 0.1554 0.3093 1, 1. 1. t. 1. 

10 0.1314 0.2882 1. 1. 1. 1. 1. 
11 0.1373 0.2686 0.4584 1. 1. 1. 1. 
12 0.1203 0.2536 0.4183 1. 1. i. 1. 
13 0.1241 0.2414 0.3871 1. 1, 1. 1. 
14 0.1115 0.2297 0.3622 1. 1. 1. 1. 
15 0.1140 0.2201 0.3431 1. 1. 1. 1. 
16 0.1043 0.2118 0.3271 0.5037 1. 1. 1. 
17 0.1060 0.2039 0.3127 0.4622 1. 1. 1. 
18 0.0983 0.1970 0.3000 0.4346 1. 1. 1. 
19 0.0994 0.1909 0,2891 0.4113 1. 1. 1. 
20 0.0932 0.1850 0.2794 0.3916 1. 1, 1. 
21 0.0939 0.1798 0.2704 0.3754 1. 1, 1. 
22 0.0888 0.1751 0.2622 0.3616 0.5186 1, 1. 
23 0.0892 0.1706 0.2548 0.3494 0.4830 1. 1. 
24 0.0850 0.1664 0.2480 0.3382 0.4594 1. 1. 
25 0.0852 0.1626 0.2417 0.3280 0.4393 1, 1. 
26 0.0816 0.1590 0.2358 0.3188 0.4216 1. 1. 
27 0.0816 0.1556 0.2303 0.3104 0.4063 1. 1. 
28 0.0786 0.1525 0.2253 0.3027 0.3932 1. 1. 
29 0.0785 0.1495 0.2205 0.2955 0.3817 0.5119 1. 
30 0.0758 0.1466 0.2160 0.2887 0.3714 0.4878 1. 
31 0.0757 0.1440 0.2118 0.2824 0.3619 0.4689 1. 
32 0.0734 0 . i414 0.2078 0.2766 0.3530 0.4522 1. 
33 0.0731 0.1390 0.2040 0.2711 0.3447 0.4372 1. 
34 0.0711 0.1367 0.2004 0.2659 0.3371 0.4238 1. 
35 0.0708 0.1346 0.1970 0.2609 0.3300 0.4121 1. 
36 0.0691 0.1325 0.1938 0.2563 0.3234 0.4017 0.5213 
37 0.0688 0.1305 0.1907 0.2519 0.3172 0.3924 0.5001 
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For the particular case of p = 2 we obtain Cgu2 = 0 for N odd and 
Cgu2 = (u~2) for N even, from which follows Eq. (55). 

For each value of the coordination number z and number of colors p I 
have obtained Ap by repeated iterations of Eq. (56). Table V displays the 
results for several values of z and p. When only the paramagnetic solution 
(Ap 1 = 0 and Ap = 1) is present, then this solution is shown. In this case 
the cost function is zero. 

Let us denote by p* the chromatic number for a given z, that is, the 
smaller number of color p for which 7 = 0. From Table V we can have 
numerical upper bounds for p* for each value of z. We have 

p*~<3 for 3~<z~<5 

p*~<4 for 6~<z~<10 

p*~<5 for ll~<z~<15 

p*~<6 for 16~<z~<21 

p*~<7 for 22~<z~<28 

p*~<8 for 29~<z~<35 

From the results of Sections 6 and 7 we have, actually, p* = 3 for 3 ~< z ~< 6. 

9. C O N C L U S I O N  

I have analyzed the p-partitioning and p-coloring problems on a Bethe 
lattice of coordination number z for several values o f p  and z. The study of 
these problems on such a lattice is motivated by the relationship between 
an infinite Bethe lattice and an infinite random graph of intensive connec- 
tivity. Consider a random graph with N vertices such that each vertex is 
connected to exactly c~ other vertices, with ~ independent of N. According 
to Banavar et aL, (7) in the limit of N ~  ~ ,  the probability of small loops 
decreases as 1IN, so that the random graph will behave like a Bethe lattice 
of coordination number ~. Therefore, the present results should be com- 
pared with those valid for random graphs of intensive connectivity that 
have an infinite number of vertices. For  instance, the results I have 
obtained for the chromatic number are in good agreement with those given 
by Lai and Goldschmidt. (n) In the case of p - - 2  the present results are 
identical to those obtained by M6zard and Parisi ~9) for the bipartitioning 
problem. 
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